
Stat 5870: Key points and formulae Week 15 - part 1

Quantifying prediction accuracy
Context: Using leave-one-out (loo) cross-validation
PRESS statistic: Prediction Residual Error Sums-of-Squares

loo idea, quantifying overall accuracy predicting new observations
like Sum-of-squared errors but quantifies prediction accuracy

PRESS = Σobs(Yi − Ŷ−i)
2

Ŷ−i is prediction of Yi from model fit without Yi
Almost always larger than SSE = Σobs(Yi − Ŷi)2
Because PRESS prediction of Yi not based on Yi

Things we haven’t covered that are of general interest
Paired yes/no data
Regression with count responses
Flexible regressions (Splines, CART, Random Forests)
Two-way factorial ANOVA
Randomized Complete Block Designs (RCBD) Quick introduction to these topics

Goal is that you know some names if you want to pursue any topic
Stat 5710 (Intro to Expt. Design) covers factorial ANOVA and RCBD in great depth

Paired yes/no data:
Vit C study: what if conducted differently?

Find households with 2 adults.
Within each household, one adult gets Vit C, other gets Placebo

Data are paired (yes/no response doesn’t change that aspect of the design)
My experience is that this pairing often gets forgotten

Chi-square test is wrong (obs. are not independent)
se of log odds ratio is wrong

There are methods that explicitly account for pairing
analog of the paired t-test for continuous responses
one simple one is McNemar’s test

Regression with count responses
Two types:

Fixed maximum: Binomial distribution
unlimited maximum: Poisson distribution

Example: Case study 22.1: African elephant matings
Q: Do older elephants have more successful matings
Does success of elderly elephants “slow down”?

Poisson distribution:
Statistical model for non-negative counts
One parameter: mean. Variance is the same as the mean

So, samples from a Poisson distribution with larger mean have larger standard deviation
λ = mean ≥ 0, doesn’t have to be an integer (2.2 children in the average family)
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Relate λ to covariates by:

log λi = β0 + β1X1i + β2X2i · · ·

Increasing X1i by 1 multiplies λ by exp β1

Elephant example: plots linked to graphs page
Data exploration:

Mean # matings increases with age,
Pattern seems linear when Y = log(# matings)

SD # matings also increases with age
Q: Do older elephants have more successful matings?

Fit a Poisson regression model with linear predictor, log link:

log λi = β0 + β1Agei

Yi ∼ Poisson(λi)

Estimated coefficients (se):
Intercept: -1.582 (0.545)
Slope: 0.0687 (0.0138)

Interpretation of slope:
Mean # matings for an elephant that is 1 year older is 7.1% larger than that for the

younger elephant
exp 0.0687 = 1.071

Interpretation of slope - 2nd version with 10 year change:
Mean # matings for elephant approximately doubles when comparing an individual to

one that is 10 years younger.
exp(10× 0.0687) = 1.988

Q: Does success of elderly elephants “slow down”?
Write a model that allows that, e.g., quadratic

log λi = β0 + β1Agei + β2(Agei)
2

Yi ∼ Poisson(λi)

β̂2 = -0.00086, se = 0.002, p = 0.67
No evidence that increase in success “slows down” in elderly elephants

Comments about Poisson regression
Why is conclusion about mean instead of median?

Model is a log transformation of the mean (λi) not of the data values (Yi)
Why not just log transform # matings and use SLR? Various reasons

Poisson regression accommodates 0 values
log 0 undefined → problem when Yi = 0
0 values are no problem so long as λ > 0, λ = 0.000001 is just fine
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Regression problems: λ never = 0
ANOVA problems: Can get λ = 0 when all observations in a group are 0

Detail: different relationship between mean and sd
Detail: log Yi is not normally distributed, e.g., values are log 1 or log 2

Overdispersion in models for count data:
Both Binomial and Poisson distributions: Var Yi depends on mean Yi i.e., πi or λi

Sometimes the data are more variable than they “should” be
This is known as overdispersion

Account for it by using a more complicated distribution for the data
Fixed maximum: Beta binomial distribution instead of Binomial
Unlimited maximum: Negative binomial distribution instead of Poisson

My experience is that most ag/bio count data is overdispersed
Analysis of these data must account for overdispersion
Only exception is bird eggs/clutch, which are less variable than expected

Smoothing splines:
Goal: model relationship between Y and X without specifying the details

We’ve seen linear: E Yi = β0 + β1Xi and quadratic E Yi = β0 + β1Xi + β2X
2
i models

If curve needs to bend in a different way, could use higher order polynomial models
Adding more terms allows curve to “wiggle” more.

But only in the ways “allowed” by some specific polynomial
Smoothing splines let the data tell the model where/how much to bend
Model is

Yi = f(Xi) + εi

where f(Xi) is an arbitrary function estimated from the data
Simple model is a series of line segments joined together

bends where data bents, straight where data straight
Continuous, but not smooth (1st and 2nd derivatives not continuous)

More useful: join cubic polynomials that are continuous
with continuous 1st and 2nd derivatives
Looks smooth, most common choice for splines

Practical issue: how wiggly is the fitted curve?
A model selection issue: want to fit the data, but not overfit

A curve that wiggles a lot probably overfits the data
Common solution: borrow a model selection idea

combine Fit + penalty for wiggliness (= complexity)
What can this be used for?

Learning: understand relationship between Y and X
Interpolation: predict Y for X’s inside the data

Splines do not extrapolate well (no data to estimate the curve)
Evaluate a specific model

Overlay predicted values from the model and from a spline
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CART models: Classification and Regression Trees
Really useful for multiple X variables with complicated interaction effects
Predictor is a dichotomous key like classifying species
Model (for Gaussian data): Yi = f(Xi) + εi, εi ∼ N(0, σ2)
Like splines: estimate f(X) from data

but prediction is the average of a group of observations
Example from SAT data: if ltakers ≥ 3.205, predict 877.4; if not, predict 1002
Those values are the means of the groups with ltakers ≥ 3.205 and ltakers < 3.205

Algorithm:
Consider all variables, and all possible split points
Find the variable and split point that best separates two groups

details of “best” depend on nature of the data (continuous, count, yes/no)
Split the data, consider each subgroup separately
Find the best split for subgroup 1, result is two sub-sub-groups
And for subgroup 2, giving 2 more sub-sub-groups
Keep splitting until:

no effective split
or groups too small to split further (user specified limit)

Practical experience is that a tree tends to overfit the data
“prune” the tree by removing lowest branches
decision often made using cross-validation

Make prediction by working down the tree
at each split, decide which way the observation goes
when get to end, prediction is the average for that leaf

CART models:
require quite a bit of data (> 100 observations, >250 is better)
are really effective with contingent relationships

SAT: rank only matters when ltakers < 3.205
not as useful when a simple model (e.g., linear) is sufficient

Random Forest:
Extension of a CART model
Idea is to create many trees by resampling the original data

500 trees is common, often more.
Prediction: have covariate values

Use covariates to make a prediction from each model, so 500 predictions
report their average as the prediction for that observation

An example of “ensemble” prediction: using many models
Seems weird, but works extremely well
Random Forests are the best “out of the box” method to make predictions

my experience and opinion, shared by lots of others
“out of the box” means they work on lots of different types of problems
without requiring a lot of problem-specific tweaking.
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